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Hypotheses relative to the character of variation of the electromagnetic field 
and elastic displacements over the thickness of a plate were formulated in [l, 

23 on the basis of solutions obtained by the method of asymptotic integrationof 
the three-dimensional equations of magnetoelasticity. Two-dimensional equa- 

tions of magnetoelasticity, in which unknown boundary values of the components 

induced by the elec~omagnetic field enter, have been obtained on the basis of 
these hypotheses. The equations obtained must hence be examined in combina- 
tion with the Maxwell equations for the medium surrounding the plate under 

general boundary conditions at the interface of the two media, This means that 
the ~gnet~lastici~ problem nevertheless remains three-dimensional. 

On the basis of the mentioned hypotheses for the magnetoelasticity of thin 

bodies [l, 21, an attempt is made in this paper to reduce the three-dimensional 

magnetoelasticity problem to a two-dimensional problem, which will substan- 
tially facilitate the investigation of questions about the magnetoelasticity of 
thin bodies. 

1, Let an isotropic plate of constant thickness 2 h, fabricated from a material with 
finite electrical conductivity, be in an external stationary magnetic field with a given 
magnetic induction vector B, = (BOA, B,,, B,,J. The problem is solved under the as- 

sumption that the Maxwell equations for a vacuum are valid for the medium surround- 
ing the plate. It is also assumed that the influence of displacement currents on the elas- 
tic vibrations characteristics can be neglected. 

The elastic and electromagnetic properties of the plate material are characterized 
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by the elastic modulus E, the Poisson’s ratio v, the density p, the electrical conducti- 

vity a, the magnetic permittivity p and the dielectric constant e. 
An x, y, z rectangular coordinate system is selected so that the xy coordinate plane 

coincides with the middle plane of the plate. 
The magnetoelasticity hypothesis of thin bodies proposed in [l, 2) is written as 

u =u-,a” x ax ’ 
uv=v-z!+ u*=w(x,y,t) (1.1) 

ex = 9 (x, Y, t), ey = ‘p (5, y, a h, = f b, YY t) 

Here u = u (x, y, t), u = v (5, y, t), zu = w (x, y, t) are the sought tangential and 

normal displacements of points of the plate middle surface, (+, uy, u,) are the dis- 

placements of an arbitrary point of the plate, 9, ‘p are the sought tangential compon- 

ents of the induced electric field, f is the sought normal component of the magnetic 
field induced in the plate. The remaining components h,, h, of the induced magnetic 

field and e, of the induced electric field are expressed by means of the six sought func- 

tions u, V, W, 9, 9, f PI. 
The system of equations to determine the sought functions u, v, w, q, $, f which has 

been obtained on the basis of the relationships (1. l), is presented in [l, 21. 

The support condition for the plate edges and the continuity conditions for the electro- 
magnetic field components e,, ey and hz on the plate surface and endfaces must be 

appended to this system of differential eqiiations. In particular, the latter conditions for 
the rectilinear edge x==const are [2] 

(1.2) 

where h,(e), e,(e), ev(e) are the corresponding components of the electromagnetic field 

in the external domain. 

2. Values of the electromagnetic field components induced on the surface bounding 
the plate must be available for a complete determination of the displacements and the 

elecgromagnetic field in the plate. Hence, the equations presented in [l, 21 to determine 
U, V, w, T, Ip, f must be examined in combination with the Maxwell equations for the 

external medium 
rot h@) = 0, div hce) = CJ (2.1) 

under the following conditions on the plate surface z = + h [2]: 

The problem of determining the magnetic field components in the medium surround- 
ing the plate then reduces to solving (2. I) with the conditions (2.2) and conditions of 
the form (1.2) on the plate side surface, as well as conditions for damping of the distur- 
bances at infinity. 

The problem of determining the magnetic field hce) is solved comparatively simply 
if the quantity hzteJ is given in the z = & h planes outside the plate. For example, 
this holds when the plate makes contact over its whole contour with an ideally conduc- 



ting diaphragm whose motion is given. Then [3] 

@z = rot, (ug x B,f, (~9 ~1 E 8, 1 z I i h. 

where u. box, uo,,, u,,J is a given displacement vector for points of the diaphragm and 
& is the domain in the s = 0 plane bounded by the plate contour. Hence, in particular, 

we obtain h, = 0 in the domains (I, y) g 61, 1 z 1 < h for a fixed diaphragm (uO = 0) . 
In this case, inserting the potential function 0 by means of 

hfe) = grad Q, (2.3) 

reduces the problem to the following external Neumann problem for the function a: 

Aa - 0 
(2.4) 

q+ (2, !/, 1) =: ; [rotz (uo x Bo)I,=,~ - 

It is known from potential theory that the solution of (2.4) can be represented as the 

potential of a simple layer (the upper sign is here taken for z > h, and the lower for 

In the particular case when the plate vibrations mode is a cylindrical surface z = 
w (5, t) (plane problem), the solution of the Neumann problem is represented by means 

of the logarithmic potential of a simple layer. 
By virtue of(2.3) and(2,4),we find from(2.5) 

h,+ - h,- _ t 
(2.6) -- 

2 at ss 
‘--4 F (ti;, 9, t) dt dq 

C” 
--a? 

The integral in (2.6) is understood to be a Cauchy principal value. 
Substituting (2.6) into the system presented in [l , 21, we. obtain the governing system 

of equations in the desired functions ZL, 0, ID, rp,$, f of the problem. Therefore, the prob- 
lem of magnetoelastic plate vibrations reduces in this case to a system of singular in- 
tegro-differential equations with a Cauchy kernel. 

Let us present the mentioned system in the case of the plane problem, when the plate 
is a strip of width 2n in a permanent external magnetic field whose intensity vector is 
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parallel to the z-axis (for simplicity it is assumed that p = f, u0 = 0) 

f2.7) 

The integral in (2.7) is also understood in the principal value sense. In the case of 

an infinite plate the domain of integration will be (- cc, c*3). 
Let us turn to the general case when the values of hl(cj are unknown along the whole 

xy plane. In this case a considerably more complex boundary value problem must be 
solved. 

Let us consider the case of the plane problem by replacing the plate by the slit [--a, 
aJ on the real axis. Let the plate move in a complex e = 2 + iy plane. The normal 
magnetic field component h, (@ should satisfy the Laplace equation for two independent 
variables upon compliance with the conditions 

h(e)=jg+(r,t) for Y==-4-0, --n66a 
:f \&J-(&t) for 1,==--0, --a,<s<.u (2.3) 

and the conditions for damping the disturbances at infinity. 

The problem therefore is reduced to the following: find a function IV(z) which is 

analytic outside the segment (--a, a) , equal to zero at infinity, and whose imaginary 

part h,@) on the upper and lower edges of this segment take on the given values (2.8). 

The solution of this problem is [4] 

We hence find i3hv@) / 8~ and taking into account that the condition div h = 0 is 
valid on the plate surfaces (y = t_ 0), we determine the value of the quantity a (&+ - 
hX-) I &. Then by substituting the value found for a (h,+ -- h;) / 3% into the system 

from[l, 2],we obtain the governing system of the problem for the desired functions u, 

WY $1, f. 
Boundary conditions on the plate endfaces for the electromagnetic field components 

and the usual support conditions for the plate edges must be appended to the governing 
equations in order to solve specific boundary value problems. 

3, As an illustration, let us apply the method elucidated to solve the problem of 
vibrations of an infinite plate with constant finite electrical conductivity in the presence 
of an external magnetic field with intensity vector parallel to the z-axis. 

We seek the solution of the system (2.7) as waves being propagated along the x-axis. 
Then substitution into (2.7), while taking into account that the domain of integration is 

(--tv, c=), results in the following characteristic equation to determine the vibrations 

frequency 0 (k = rr / h is the wave number and A is the half-wave length): 

(g -- 003 - Box k (1 + h-h) I = o 

4JtP (3.1) 
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Here w0 is the natural vibrations frequency of the plate in the absence of a magnetic 
field, 

Let us find the magnitudes of the induced magnetic and electric field intensities in 

the whole space as a function of the plate deflections: 

h, = z f~, h, = - ikqw, eu = - :qw (3.2) 

h(e) = _c kqek(hT’& 
x 

h(e) = zjz ikqek(“rz)w 
2 

Here the upper signs are taken for z > h and the lower for I < - h. 

Comparing the values of the quantities (3.2) with the corresponding values of the same 

quantities obtained in [l], shows that the results found in [l] agree with (3.2) for v2 / 

c2 4 1 (V is the phase velocity of elastic wave propagation in the plate and c is the 
speed of light in vacuum). Let us also mention that (3.1) agrees to the accuracy of 
quantities on the order of Vsl ~2 with the corresponding characteristic equation obtained 

in [I] in the solution of the same problem taking account of displacement currents. 
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